Jak/STAT signaling pathway regulates nox1 and nox4-based NADPH oxidase in human aortic smooth muscle cells.

نویسندگان

  • Adrian Manea
  • Laurentia Irina Tanase
  • Monica Raicu
  • Maya Simionescu
چکیده

OBJECTIVE Oxidative stress mediated by Nox1- and Nox4-based NADPH oxidase (Nox) plays a key role in vascular diseases. The molecular mechanisms involved in the regulation of Nox are not entirely elucidated. Because JAK/STAT regulates many genes linked to inflammation, cell proliferation, and differentiation, we questioned whether this pathway is involved in the regulation of Nox1 and Nox4 in human aortic smooth muscle cells (SMCs). METHODS AND RESULTS Cultured SMCs were exposed to interferon gamma (IFNgamma) for 24 hours. Using lucigenin-enhanced chemiluminescence and dihydroethidium assays, real-time polymerase chain reaction, and Western blot analysis, we found that JAK/STAT inhibitors significantly diminished the IFNgamma-dependent upregulation of Nox activity, Nox1 and Nox4 expression. In silico analysis revealed the presence of highly conserved GAS elements within human Nox1, Nox4, p22phox, p47phox, and p67phox promoters. Transient overexpression of STAT1/STAT3 augmented the promoter activities of each subunit. JAK/STAT blockade reduced the Nox subunits transcription. Chromatin immunoprecipitation demonstrated the physical interaction of STAT1/STAT3 proteins with the predicted GAS elements from Nox1 and Nox4 promoters. CONCLUSIONS JAK/STAT is a key regulator of Nox1 and Nox4 in human vascular SMCs. Inhibition of JAK/STAT pathway and the consequent Nox-dependent oxidative stress may be an efficient therapeutic strategy to reduce atherogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II.

A major source of vascular smooth muscle cell (VSMC) superoxide is NAD(P)H oxidase. However, the molecular characteristics and regulation of this enzyme are unclear. We investigated whether VSMCs from human resistance arteries (HVSMCs) possess a functionally active, angiotensin II (Ang II)-regulated NAD(P)H oxidase that contains neutrophil oxidase subunits, including p22phox, gp91phox, p40phox,...

متن کامل

Differential upregulation of Nox homologues of NADPH oxidase by tumor necrosis factor-α in human aortic smooth muscle and embryonic kidney cells

NADPH oxidases are important sources of vascular superoxide, which has been linked to the pathogenesis of atherosclerosis. Previously we demonstrated that the Nox4 subunit of NADPH oxidase is a critical catalytic component for superoxide production in quiescent vascular smooth muscle cells. In this study we sought to determine the role of Nox4 in superoxide production in human aortic smooth mus...

متن کامل

The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle.

OBJECTIVE NADPH oxidases are important sources of reactive oxygen species (ROS) in the vasculature. In phagocytic cells, the catalytic subunit of NADPH oxidase is a glycoprotein, gp91phox. However, vascular smooth muscle cells (VSMCs), which show prominent NADPH oxidase activity, lack gp91phox. Hence, we examined the role of Nox4, a gp91phox homologue, in superoxide production in mouse-cultured...

متن کامل

Protein disulfide isomerase expression increases in resistance arteries during hypertension development. Effects on Nox1 NADPH oxidase signaling

NADPH oxidases derived reactive oxygen species (ROS) play an important role in vascular function and remodeling in hypertension through redox signaling processes. Previous studies demonstrated that protein disulfide isomerase (PDI) regulates Nox1 expression and ROS generation in cultured vascular smooth muscle cells. However, the role of PDI in conductance and resistance arteries during hyperte...

متن کامل

Nox1 mediates basic fibroblast growth factor-induced migration of vascular smooth muscle cells.

OBJECTIVE Basic fibroblast growth factor (bFGF) stimulates vascular smooth muscle cell (SMC) migration. We determined whether bFGF increases SMC reactive oxygen-species (ROS) and studied the role of ROS for SMC migration. METHODS AND RESULTS bFGF rapidly increased rat SMC ROS formation and migration through pathways sensitive to inhibition of NADPH oxidases, PI3-kinase, protein kinase C, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 30 1  شماره 

صفحات  -

تاریخ انتشار 2010